Import of amber and ochre suppressor tRNAs into mammalian cells: a general approach to site-specific insertion of amino acid analogues into proteins.
نویسندگان
چکیده
A general approach to site-specific insertion of amino acid analogues into proteins in vivo would be the import into cells of a suppressor tRNA aminoacylated with the analogue of choice. The analogue would be inserted at any site in the protein specified by a stop codon in the mRNA. The only requirement is that the suppressor tRNA must not be a substrate for any of the cellular aminoacyl-tRNA synthetases. Here, we describe conditions for the import of amber and ochre suppressor tRNAs derived from Escherichia coli initiator tRNA into mammalian COS1 cells, and we present evidence for their activity in the specific suppression of amber (UAG) and ochre (UAA) codons, respectively. We show that an aminoacylated amber suppressor tRNA (supF) derived from the E. coli tyrosine tRNA can be imported into COS1 cells and acts as a suppressor of amber codons, whereas the same suppressor tRNA imported without prior aminoacylation does not, suggesting that the supF tRNA is not a substrate for any mammalian aminoacyl-tRNA synthetase. These results open the possibility of using the supF tRNA aminoacylated with an amino acid analogue as a general approach for the site-specific insertion of amino acid analogues into proteins in mammalian cells. We discuss the possibility further of importing a mixture of amber and ochre suppressor tRNAs for the insertion of two different amino acid analogues into a protein and the potential use of suppressor tRNA import for treatment of some of the human genetic diseases caused by nonsense mutations.
منابع مشابه
Complete set of orthogonal 21st aminoacyl-tRNA synthetase-amber, ochre and opal suppressor tRNA pairs: concomitant suppression of three different termination codons in an mRNA in mammalian cells.
We describe the generation of a complete set of orthogonal 21st synthetase-amber, ochre and opal suppressor tRNA pairs including the first report of a 21st synthetase-ochre suppressor tRNA pair. We show that amber, ochre and opal suppressor tRNAs, derived from Escherichia coli glutamine tRNA, suppress UAG, UAA and UGA termination codons, respectively, in a reporter mRNA in mammalian cells. Acti...
متن کاملA general approach for the generation of orthogonal tRNAs.
BACKGROUND The addition of new amino acids to the genetic code of Escherichia coli requires an orthogonal suppressor tRNA that is uniquely acylated with a desired unnatural amino acid by an orthogonal aminoacyl-tRNA synthetase. A tRNA(Tyr)(CUA)-tyrosyl-tRNA synthetase pair imported from Methanococcus jannaschii can be used to generate such a pair. In vivo selections have been developed for sele...
متن کاملTransfer ribonucleic acid-mediated suppression of termination codons in Escherichia coli.
The universal genetic code includes three codons which signal polypeptide chain termination. These termination or nonsense codons are UAG (amber), UAA (ochre), and UGA (opal). Usually, Escherichia coli and other procaryotic cells do not contain transfer ribonucleic acids (tRNAs) which recognize these codons. However, such tRNAs can be created by suppressor mutations in tRNA genes, generating tR...
متن کاملTwenty-first aminoacyl-tRNA synthetase-suppressor tRNA pairs for possible use in site-specific incorporation of amino acid analogues into proteins in eukaryotes and in eubacteria.
Two critical requirements for developing methods for the site-specific incorporation of amino acid analogues into proteins in vivo are (i) a suppressor tRNA that is not aminoacylated by any of the endogenous aminoacyl-tRNA synthetases (aaRSs) and (ii) an aminoacyl-tRNA synthetase that aminoacylates the suppressor tRNA but no other tRNA in the cell. Here we describe two such aaRS-suppressor tRNA...
متن کاملCharacterization of amber and ochre suppressors in Salmonella typhimurium.
Amber and ochre suppressor mutations in Salmonella typhimurium were selected. The amino acid insertions directed by the suppressors were inferred from suppression patterns of Escherichia coli lacI amber mutations. These amber mutations only respond to nonsense suppressors that direct the insertion of particular amino acids. Four Salmonella amber suppressors characterized insert serine, glutamin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 98 25 شماره
صفحات -
تاریخ انتشار 2001